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applications to cylindrical and spherical shock waves 

By R. F. CHISNELL 

Departvent of Mathematics, University of Manchestw 

(Received 21 January 1957) 

SUMMARY 
A first-order relationship between changes in area and shock 

strength is derived for the case of a shock moving through a small 
area change in a channel. By integration of this relationship the 
area of the channel is obtained as a function of the shock strength 
in closed form. This result is interpreted as giving the average 
strength of a shock at a given time as it moves along a channel 
of arbitrary shape. 

By suitable choices of the shape of the channel, descriptions 
of converging cylindrical and spherical shocks are obtained. 
These descriptions are found to be in close agreement with the 
similarity solutions valid near the points of collapse of the shocks. 
The reason for such good agreement is examined. 

1. INTRODUCTION 
The motion of a converging cylindrical or spherical shock wave in a 

perfect gas with constant ratio of specific heats has been studied by Guderley 
(1942) and Butler (1954). The shock moves into a uniform medium initially 
at rest. As the shock converges it becomes stronger, until it collapses on 
its axis or point of symmetry, where its strength is singular. Thus in the 
neighbourhood of this axis or point of symmetry, which is taken as the 
origin, the ‘ strong ’ shock conditions are applicable. In  these conditions 
the pressure in front of the shock is neglected in comparison with the 
pressure behind the shock. Guderle y’s solution uses these and therefore 
is applicable only in this neighbourhood. This simplification leads to a 
boundary condition for the flow behind the shock wave which permits a 
similarity solution to the problem, including a description of the resulting 
outward-going shock. The similarity variable is R’la/t, R being distance 
from the origin, t the time measured from the instant at which the shock 
reaches the origin, and u a constant depending on y and j ; where y is the 
ratio of specific heats of the gas a n d j  has the value 1 for the cylindrical 
shock and 2 for the spherical shock. In this solution the pressure ratio 
across the shock is proportional to R2(a-l)la. For y = 5 ,  j = 1, Guderley 
calculates 2(a- 1)/a as -0.396, while Butler gives the result correct to 
six figures for y = E, i, and j = 1,2  with the aid of an electronic computer, 
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An alternative approximate solution to the problem is given in this 
paper. A description of the motion of the shock is given which is not 
restricted to the neighbourhood of the origin, as is the work already 
described. The treatment is based on the description, due to Chester 
(1953, 1954), of a shock passing along a channel consisting of two uniform 
sections of nearly equal cross-sectional area joined by a section of varying 
area. Section 2 contains a simple derivation of the asymptotic solution 
after a large time which agrees with the asymptotic form of Chester’s 
solution. After linearization of the problem with respect to SA, the small 
area change in the channel, the ratio 6x/SA is found in terms of A and z, 
6x being the change at large time of the shock pressure ratio x due to the area 
change SA. After taking the limit SA -+ 0 and integrating, a relation between 
A and x is found in closed form. The relation gives an approximate 
description of the motion of the shock in terms of the area of the channel, 
which may be used for finite continuous area changes. Two assumptions 
have been made in deriving this relation. The first is that the effect of 
reflected disturbances generated by the shock may be neglected. In $ 3  
this assumption is examined for the particular cases of converging cylindrical 
and spherical shocks near the origin, where an exact solution is available 
for comparison. The motion of the shock is found to be only very slightly 
modified by consideration of these reflected disturbances. The work of 
R. B. Payne, described below, suggests that the error due to the neglect of 
these disturbances is also small for symmetrical shocks away from the 
origin. The second assumption is that the steady state solution of Chester’s 
problem, valid only for large time, may be used. This assumption is given 
weight by the work of Chester. He shows that although the shock is not 
uniform across the channel after entering the area change, the change in 
shock strength averaged at any one time over its area is proportional to the 
change in area of the channel. Thus when the area change is passed, the 
average shock strength is constant, there being only local changes in its 
strength tending to make the shock uniform. Hence the integration of the 
differential equation derived from an asymptotic solution will give an average 
shock strength in terms of the area. However, for the special symmetrical 
flows of converging cylindrical and spherical shocks, the shock strength 
at any one time is uniform over its area and thus the limitation of this second 
assumption does not apply. 

Any given part of a converging cylindrical or spherical shock front 
remains bounded by a certain wedge or cone, whose axis or vertex is 
respectively the centre of the cylindrical or spherical front. This axis or 
vertex is the origin at which the shock collapses. At a distance R from the 
origin the area of the wedge- or cone-shaped channel is proportional to Rj 
and hence the approximate relationship between shock strength and area 
becomes a (x,R)-relation. Near the origin it gives that the shock strength 
is proportional to R-jg, where K depends only on y. For the six cases 
studied by Butler the index -jK of this paper is found to be always 2% 
of the index 2(a - l)/a of his exact solution. This agreement is surprisingly 
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good. The small discrepancy between the two solutions is due, as has 
already been pointed out, to the neglect of the reflected disturbances. By 
considering the effect of these disturbances directly, it is found in $ 3  that 
the correction they cause is small due to an apparently fortuitous cancellation 
of terms. 

A check on the accuracy of this approximate theory away from the 
origin is provided by the work of Payne (1957). He uses a technique due 
to Lax (1954) to obtain, using an electronic computer, the flow behind 
converging cylindrical and spherical shock waves for various initial con- 
ditions. The description of the motion of the shock is found to be in 
excellent agreement with the theory of this paper and is discussed in Payne’s 
publication. 

For problems involving sudden finite changes in area the work of 
Laporte (1954) applies. He determines the steady state solution for large 
area changes in a manner similar to that given in Q 2 for small area changes. 

2. APPROXIMATE DESCRIPTION OF THE MOTION OF THE SHOCK 

If a shock moving uniformly along a channel encounters a small area 
change, the flow behind the shock and the shock itself are perturbed. As 
stated in the Introduction this problem has been solved by Chester. 
However the form of this solution at large time after the shock has passed 
the area change is easily obtained and is presented here. The steady state 
configuration for the interaction of a shock and a small area change is shown 
in figure 1 .  

Let p ,  p, u, a, M ,  with the appropriate suffix, be the pressure, density, 
fluid velocity, sound speed and Mach number in any of the six regions 
shown. The incident shock strength x is defined as a pressure ratio, 

x = P2lPl. (2.1) 
The flow variables behind the incident shock are given in terms of the 

shock strength and conditions ahead of the shock by the Rankine-Hugoniot 
equations which may be written in the form 

The fluid velocity u2 is measured in the direction of the motion of the shock, 
and the velocity u1 ahead of the shock is assumed zero. The ratio of the 
specific heats of the ideal gas is y. 

Across the area change between regions 2 and 3, the continuity and 
Bernoulli equations together with the isentropic relation yield the first order 
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steady channel-flow equations, 
yM,2 SA 

E3 = 1- -- 
P, (Mi-1) A ’  

2 

I I  
/ ’  - , 

A A + 6  A DISTANCE 
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Figure 1. A shock wave separating regions 1, 2 is incident on a small change in the 
area of a channel from A to A + 6A. The resulting transmitted shock separates 
regions 5, 6. The fluid initially in the area change is set in motion by the 
shock and separates regions 4, 5. A small reflected disturbance separates 
regions 3, 4, and moves along the channel in the same direction as the shock, 
if the flow behind the shock is supersonic. The shape of the channel is 
shown at the bottom of the figure. 

The divisipn between regions 4 and 5 separates the fluid into the parts 
initially on either side of the area change. After the disturbances have left 
this part of the fluid there will be no pressure or velocity differences between 

F*M, U 
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these two regions, though it will be seen that a density change is left. Thus 

p 4  = p5, u4 = ub* (2.8) 
On passing the area change the shock encounters the same conditions 

as before but nevertheless its strength changes to z+Sz due to the area 
change. The flow in region 5 is described by a set of equations similar to 
equations (2.1) to (2.4) with z replaced by z + Sz and the suffix 2 by suffix 5 ,  
it being remembered that bonditions in regions 1 and 6 are identical. 

Combining all the above pressure and fluid velocity equations the 
following relations between the pressures and velocities in regions 3 and 4 
are obtained, again retaining only terms of order 6A, 

6z- - sA - (2.10) - u4 = 1 + __ 6z - (Y + 1) 
% Z - 1  2 ( ( ~ + 1 ) ~ + ( ~ - 1 ) }  (Mi-1) A'  

But the pressure and velocity jumps across a sound wave are related 
directly, 

- 1  = - yM3 -1) .  
P3 

(2.1 1) 

In  figure 1 this reflected disturbance is shown moving upstream with the 
shock, that is, the flow behind the shock is supersonic. The results of this 
section still hold if the flow is subsonic. 

Substitution of (2.9) and (2.10) into (2.11) leads to a relation between 
the first order quantities 6A and 6z. This relation involves M ,  and M3 
which differ by a term of order SAIA; thus, letting 6A -f 0, both may 
be replaced by (2.4). There follows, after some reduction, 

1 (I!+ 1) +--  1 dA 1 
A d x  yz (z-1) 2((y+l)z+(y-l)} + 

- - - = -  

,4n equivalent formula is given by Chester (1954) with the right-hand 
side of the equation written as {(z- l)K(z)}--l, where K(2) is expressed in 
terms of the Mach number of the fluid behind the shock, the Mach number 
of the shock referred to the fluid in front of the shock, and the relative 
Mach number of the shock to the fluid behind it. Chester observes that 
K(z) is a monotonic decreasing function of shock strength with only a 
small total variation. For y = 1.4 this variation is from 0.5 for weak shocks 
to approximately 0.394 for strong shocks. 

It is to be emphasized that the derivation of (2.12) by matching steady 
state flows in regions 2 to 6 will give the solution only for large time. The 
work of Chester, however, is an exact solution to the problem depending 
only on the linearization with respect to the area change. Chester shows 
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that the shock strength averaged at one time over the shock front depends 
only on the area of the channel. Thus after the area change the average 
shock strength z+6z does not alter and is given by the above analysis. 
The only subsequent changes in the shock strength are local as the shock 
tends to a uniform plane shock. 

Integration of (2.12) will give a shock-strength/area relation applicable 
to channels of continuously varying area with finite total changes. When 
the area change is small this result gives the average strength of the shock 
after the area change, the shock then tending to become uniform with this 
average value as its strength. For large area changes however, the result 
gives only an approximation to the average shock strength. This is because 
disturbances reflected by the shock are not negligible when the area change 
is large. These disturbances move into a non-uniform flow and thus 
generate further disturbances, some of which catch up the shock and alter 
its strength. It is the neglect of these disturbances that renders this 
shock-strength/area relation only an approximation to the average shock 
strength. The effect of these disturbances is considered in $3 for the 
cases of converging cylindrical and spherical shocks near the origin. 

The integration of (2.12) gives 

Af(x) = constant, 
where 

(2.13) 

' 1 '  ' (y-1)zj 

The function has been tabulated by Payne for y = 1.4 and is given in 
table 1. Given the value of the shock strength on encountering an area 
change in a channel and the ratio of the areas at the ends of the variable 
area section the strength of the shock on emergence from this section is 
obtained by inverse interpolation in table 1. 

A much simpler, though not so accurate, relationship between shock 
strength and area is obtained by noting that K(z)  has a small variation for 
quite large variations in shock strength. Thus replacing the right-hand 
side of (2.12) by {(z-  l)K(z)}-l and treating K(z)  as a constant, one finds 
that 

A(z - I)l'K(z) = constant. (2.15) 

U 2  
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For y = 1.4 the values of K(z) are also given in table 1. It is suggested 
that an estimated mean of the values of K(z)  corresponding to the shock 
strengths at the ends of the variable area section be used in (2.15). 

The application of the above description of a shock wave moving in a 
channel of varying area to converging cylindrical and spherical shocks is 
obtained by considering channels with areas proportional to Rj, where j is 
1 and 2 respectively, and R is the distance of the shock from its axis or 
point of symmetry. 

2 

1 .oo 
1.05 
1.10 
1.15 
1.2 
1.3 
1.4 
1.5 
1.6 
1.8 
2.0 
2.5 
3.0 
345 
4 -0 
4.5 
5 
6 
7 
8 
9 

10 

0 
0.019 119 
0.078 499 
0.181 03 
0.329 42 
0.773 94 
1.431 0 
2.318 0 
3.450 6 
6.510 9 

10.719 
26.867 
52.063 
87.41 8 

133.92 
192.48 
263.94 
448.72 
694.18 

1005-8 
1388.6 
1847 *4 

0.500 00 
0.493 37 
0.487 65 
0.482 65 
0.478 27 
0-470 94 
0.465 06 
0.460 25 
0.456 26 
0449 99 
0.445 29 
0.437 40 
0.432 39 
0.428 81 
0.426 07 
0.423 85 
0.422 00 
0.419 03 
0.416 70 
0.414 81 
0.413 24 
0.411 90 

2 

12 
14 
16 
18 
20 
25 
30 
35 
40 . 
45 
50 
60 
70 
80 
90 

100 
150 
200 
250 
300 
350 
400 

10-4 x j ( z )  

0.301 09 
0.453 05 
0.643 74 
0.876 10 
1.152 9 
2.056 3 
3.291 7 
4-893 6 
6.894 1 
9.323 1 

12.209 
19.457 
28-838 
40.539 
54.732 
71.582 

200-88 
417.44 
735.98 

1169.6 
1730.1 
2428.5 

Kc4 

0.409 73 
0.408 04 
0.406 69 
0.405 57 
0.404 65 
0.402 88 
0.401 62 
0.400 68 
0.399 95 
0.399 36 
0.398 89 
0.398 15 
0.397 62 
0.397 21 
0.396 88 
0.396 62 
0.395 82 
0.395 41 
0.395 16 
0.394 99 
0.394 87 
0.394 78 

Table 1. The functions f(z) and K(z) relate to equations (2.14) and (2.15). y = 1.4. 

Thus for converging symmetrical shocks (2.13) becomes 
Rjf(x) = constant. (2.16) 

The simpler form (2.15) can be similarly applied. 
For weak shocks f ( z )  behaves like ( z -  1)2 giving the familiar acoustic 

result that the strength of the disturbance varies inversely as the square 
root of the area of the disturbance. 

In the neighbourhood of the origin where z is largef(z) behaves like zl’=, 
where K is the limiting value of K(z )  for very strong shocks and is given by 

(2.17) 

Thus for cylindrical and spherical shocks near the origin the strength is 
proportional to RE, and R-2Ki respectively. Table 2 gives the exponents 
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-jK for various values of y, together with the corresponding exponents 
2(a-  1)/a calculated by the exact theory of Butler. It is seen that the 
agreement is very good. For these symmetrical shocks it is to be remem- 
bered that the second limitation on the theory of this section, namely that 
it gives only an average shock strength, does not apply. The only source 
of error is the neglect of the effect on the flow behind the shock of the 
reflected disturbances. This will now be considered. 

Cylindrical Shock ( j  = 1) 

y = g  
y = '  
y = "  

Spherical Shock ( j  = 2) 

-K 
this paper 

-0.326 223 
-0.394 141 
-0.450850 

2(a- 1)/a 
Butler 

-0.322 441 
-0.394 589 
-0.452 108 

-2K 
this paper 

-0.652 447 
- 0.788 283 
-0.901 699 

2(a- l)/a 
Butler 

-0.641 513 
-- 

-0.788 728 
-0.905 385 

Table 2. The values of --K or -2K and 2(a-l)/a are the distance exponents 
describing the behaviour of the shock strength, for cylindrical and spherical 
shocks near the origin, on the theory of this paper and the exact solution of 
Butler respectively. 

3. DISCREPANCY BETWEEN THE PRESENT THEORY AND THE SIMILARITY SOLUTION 

It was seen in the last section that the description of symmetrical shocks, 
obtained from Chester's channel result, is in close agreement with that 
given by the similarity solutions of Guderley and Butler. Such discrepancy 
as there is may be indirectly attributed to the disturbances generated by 
the motion of the incident shock. As these disturbances move through the 
non-uniform medium behind the shock, their strengths change and further 
disturbances are reflected which move through the fluid in the same 
direction as the shock. The strengths of these re-reflected disturbances 
are examined in this section. In particular the modification to the motion 
of the shock due to  some of the re-reflected disturbances merging with it 
is discussed. 

A complete account of the effect on the shock of disturbances merging 
with it from behind is not given, there being three limitations to this work. 
The first is that the effect on the shock of higher order disturbances-such 
as the fourth order disturbance generated by the third order or re-re-reflected 
disturbances-is neglected. The second limitation .to the work of this 
section is an assumption concerning the description of the flow behind the 
shock. I t  is known that the shock strength is singular at the origin, giving 
the Mach number of the flow behind the shock the limiting value 

and the density ratio across the shock the limiting value ( y  + l ) / ( y  - 1 ) .  
The reflected disturbances and their associated re-reflected disturbances 
which merge with the shock are assumed to travel in a flow having this 
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limiting Mach number and density. Due to the violent increase in shock 
velocity as it approaches the origin it is expected that the major part of the 
disturbance which catches up the shock before it reaches the origin is 
generated in the neighbourhood of the origin. However there will be 
some disturbance generated away from the origin which in the early part 
of its motion towards the shock moves in a region where the above limiting 
flow values are not applicable. The third assumption is that elements of 
the reflected and re-reflected sound waves travel without changing their 
strength. The author has attempted to improve the description of the 
re-reflected wave given in this section by considering the various causes 
of changing strength of the elements of the sound waves, but the attempt 
has not been successful. 

There are three types of re-reflected disturbance, which together 
produce only a small effect on the shock. One of these does itself produce 
only a small effect, but each of the other two has itself a considerable effect 
on the shock ; it is the nearly complete cancellation of these three types of 
re-reflected disturbance that renders the description of the shock in $ 2  SO 

close to the exact similarity solution in the neighbourhood of the origin. 
The completeness of this cancellation can be illustrated by reference to 
table 2, where it is seen that, in the case y = Q for example, the exponent 
describing the motion of the shock deduced in $ 2 agrees with the similarity 
solution to two significant figures. If, however, just one of the two more 
significant types of re-reflected disturbance is considered the exponents 
differ by one unit in the first significant figure. 

It was seen in $ 2  
that there are two types of disturbance generated by the shock, a sound 
wave and an entropy variation. The disturbances produced by the shock 
as it moves through an elementary change in the channel area are shown in 
figure 1. An element of the sound wave separates regions 3 and 4, and a 
small entropy variation exists between the neighbouring fluid particle 
paths separating regions 4 and 5. The entropy variation is represented 
as a change in density between these regions, which have the same pressure, 
and will be referred to as a weak contact discontinuity. The strength of 
these disturbances on reflection may be obtained from the analysis of the 
last section. The strength of an element of the sound wave, defined as a 
pressure ratio, is given by (2.9) as 

The reflected disturbances are first considered. 

6X 2y SA 
l +  x + ( 2 - y ) ( y + l )  2’ 

after (3.1) has been used to eliminate M,. The strength of the weak contact 
discontinuity separating regions 4 and 5 in figure 1 may be found by the 
following simple argument. When a ‘ strong ’ shock moves through an 
area change SA there will be no change in the density ratio across the shock, 
which has the limiting value ( y +  l)/(y- l), although there will be a change 
in the pressure ratio across the shock (dz/dA)SA. In the absence of entropy 
changes the density ratio would be correspondingly changed by a factor 
1 + l/yx(dz/dA)GA. It is this change in density ratio that must be balanced 
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by the reflected weak contact discontinuity. Hence 

1 dz 
f 6  yz dA 

= 1 +  --&A. (3.3) 

The coefficient dz/dA is given by (2.12), which for strong shocks assumes 
the form 

1 dA 1 
A d z  x K '  

- -- = -  (3.4) 

The generation of an element of the re-reflected wave is due partly to 
the interaction of elements of the two forms of reflected disturbance and 
partly to the motion of these elements through changes in area. This 
interaction is shown in figure 2 to be taking place at a point in the channel 
where the area is A,. An element of the sound wave and a weak contact 
discontinuity which arrive at A ,  simultaneously are shown to have been 
generated by the shock at points of the channel where the areas are A,  
and A,  respectively. 

k 
: 
i 

I ;: I f- I I I I ,;; I 

I '  
I 1  

I 
I '  
I '  

I Y  1 
I 
I 

/ '  I 
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' I  

I 
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I 
I 
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' I  
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! I  

: I  

I '  
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I 
I 
I 
I 
I 
I 
I 
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Figure 2. An element of the sound wave reflected by a shock wave is generated at a 
channel area of As. It interacts with a weak contact discontinuity at a channel 
area A,, the contact discontinuity having been left behind in the A uid by the 
shock at a channel area Ac. The re-reflected disturbance resulting from this 
interaction and the passage of the two disturbances through a small area 
change at A,, merges with the shock wave at a channel area A,. 
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The strength of the element of the sound wave on arrival at A, is assumed 
to be unaltered from its value upon being generated at A,. This is given 
by (3.2), which may be rewritten, using (3.4), as 

where 

The strength of the elementary contact discontinuity will not be altered 
by the constant entropy interactions occurring behind the shock. Hence 
its strength on arrival at A, is the same as its strength on generation at A,, 
which is given by (3.3) as 

K SAC 1-  -- 
Y A, ' (3.7) 

again using (3.4). 
It is not intended to present here the analysis of the interaction which 

leads to the generation of a typical element of the re-reflected wave. The 
method is that used in $2, in which steady state solutions are matched 
across the various disturbances present. A very similar interaction is 
studied in detail in a previous publication'by the author (Chisnell 1955). 
The strength of the re-reflected element in excess of 1 is found to be 

(3.10) 

The three terms in (3.8) represent respectively re-reflections due to 
(i) the interaction of an element of the sound wave and a contact discon- 
tinuity, (ii) the motion of the contact discontinuity through an area change8AG 
and (iii) the motion of the element of the sound wave through this area 
change. To compare the terms in (3.8) it is necessary to express SA,SA,, 
SACSAG, SA,SA, in common form. To do this, new variables AM, the 
area of the channel where the re-reflected disturbance merges with the shock, 
and A given by 

(3.11) 
K 1  

are introduced. Two approximate relations between A, A, A, and AM 
are formulated, only two of these variables being independent. These two 
relations express firstly that the element of the sound wave and the weak 
contact discontinuity arrive at A, simultaneously and secondly that the 
re-reflected disturbance merges with the shock at AM. The relations 
are obtained by integrating the inverse of the speeds of the various 
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disturbances with respect to distance, hence obtaining simple equations 
expressing the information that given disturbances arrive at specified 
points simultaneously. Behind a strong shock the fluid velocity and the 
sound speed are proportional to the shock velocity, the constants of 
proportionality being 2/(y + 1) and d { 2 y ( y  - l)}/(y + 1) respectively. All 
these velocities are singular, being like &la or from (3.4). The distance 
along the channel is proportional to Al'j, j being 1 or 2 for the cylindrical 
or spherical shock. Hence the integral of the inverse of speed of disturbance 
with respect to a distance will be proportional to A". The two required 
relations are therefore 

(3.13) 
In terms of the variables A,, A, (3.8) becomes 

[ Y l K ( l - Y 5 )  - Y2K 
AM *(1-A)(y5-AA) Y(Y5-A) 

where Y5 = @- 2/{2Y(Y-  1)}1. 

+ m], (3.14) 
(1 - 4 

(3.15) 

By forming an integral from (3.14) with respect to A, one finds that the 
total strength of the re-reflected disturbances which merge with the shock 
at the area A, is given by 

1-7)- 8 A M  
AM 

(3.16) 

where 

The integrations with respect to A are between the limits 0 and y4, repre- 
senting re-reflected disturbances formed a long way behind the shock and 
just behind it, see (3.11). 

A description of the motion of the shock allowing for the effect of the 
re-reflected disturbances merging with it may be obtained by modifying 
the work of 0 2. In figure 1, region 2 will now be split into two parts by the 
re-reflected disturbance. Combining (2.16) and (2.17) the original shock- 
strength distance relation may be written as 

xRj" = constant. (3.18) 

Allowing for re-reflections this becomes 

xRBjK = constant, (3.19) 

where (3.20) 
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Cylindrical Shock (j = 1) 

(ii) (iii) - (9 

$0.0072 -0.049 +0.005 2 
-O*OOO 19 +0.058 -O*OOO 52 
-0.001 7 +0*095 -0.001 3 

R. F. Chisnell 

Spherical Shock (j = 2) 

6) (ii) (iii) 

+0*013 -0.085 +0*0075 
-0.000 33 $0.099 -0.000 26 
-0.0029 +0.16 -0.0020 

Y = Q  
Y = %  
Y = Q  

Table 3. A direct consideration of the re-reflected wave gives the estimates (i) for 
9, which are compared with (iii) the values of 9 required to bring the theory 
of this paper into exact agreement with the similarity solution. The entries 
(ii) give the largest single contribution to the values of q given in (i). 

The cancelling between the three types of re-reflected disturbance is 
shown in table 3, which gives (i) the values of 7 obtained from (3.17), and 
(ii) the largest of the three terms in this expression for q. For the various 
cases considered it is seen that 7 is only between Q and of the largest 
term. Also given in this table are (iii) the values of 7 required to give exact 
agreement with the similarity solution. It is seen that the values (i) are 
of the right order of magnitude to explain the small discrepancy between 
the work of 9 2 and the similarity solution. Thus the cancellation between 
the three types of re-reflected disturbance explains the very close agreement 
of the work of this paper with the similarity solution. The cancellation of 
the terms does however limit the accuracy with which the discrepancy 
between the two theories may be directly estimated, consistent with the 
assumptions of this section. As the third assumption, that the elements 
of the sound waves move with unchanged speed, applies only to the first 
and third term of (3.14), it is probably the most critical of the assumptions. 
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